Model Curriculum of BScinEARTH SCIENCES

> th& th 5 6 Semester

Program Name	BSc in EARTH SCIENCES	Semester	V
Course Title	Environmental Science and Geotectonics (Theory)		
Course Code:	ERS C-09	No. of Credits	04
Contact hours	60 Hours	Duration of	2
Formative Assessment	40	Summative Assessment Marks	60

	Contents	Hrs
Unit 1	 Fundamentals of Environmental Science: Introduction, structure, composition and interactions among the land, atmosphere and ocean, Earth andSun'srelationships.Principlesofweatherandclimatesystems, and their impaction by human activities. Meteorological hazards and extreme weather conditions (floods and droughts). Climate classifications and climatic zones of the earth with special reference to India. Proxies for understanding the long-term variations in theclimate. Introduction to biogeochemical cycling of elements. Composition of air, water and sediments and its governing factors, including human activity. Principles of an ecosystem including biotic, abiotic components and foodweb. biodiversity and its conservation. Sampling equipment and analytical methods followed in the measurement of different environmental parameters. 	15hrs 1 Credit
Unit 2	Environmental pollution, mitigation and legislation: Introduction, primary and secondary sources of pollutants in the environment. Principles of soil, air, water pollution. National and international standards for evaluating air, soil and water pollution. Solid and effluent wastes management and mitigation. Noise, thermal and marine pollution. Environmental Laws and legislation related to impact assessment conservation of water biodiversity, Forest and solid was tomanagement.	15hrs 1 Credit
Unit 3	Introduction to geotectonics and global tectonics . Composition, mineralogy, and density and temperature variations in the interior layers of the earth. Continental and oceanic lithospheres, their interaction with the asthenosphere and upper mantle. Crustal heat-flow and its variations in different parts of the earth. Neotectonics and its importance in sea-level fluctuations. Volcanic hazard: Introduction, Types of volcanoes, Volcanic form and structure, Types of central eruption, Causes of volcanic eruptions, Volcanic products: volatiles, Volcanic products: pyroclasts, Volcanic products: lava flows, Specific threats, Community impacts, Volcanic hazard and prediction Mitigation strategies Mass movements: Soil creep and valley bulging, Causes of landslides, Classification of landslides, Landslides in soils Landslides in rock masses, A brief note on slope stability analysis. Monitoring slopes, Landslide hazard, investigation and mapping, Methods of slope control and stabilization Landslide Specific threats, Community impacts, Mitigation strategies.	15hrs 1 Credit

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments
References

1 Andrews, J.E., Brimblecombe, P., Jickells, T.D., Liss, P.S. and Reid, B. (20 introduction to environmental chemistry, John Wiley & Sons,	009). An
introduction to environmental chemistry. John Wiley & Sons.	
2 Beloussov, V.V. (1980) Geotectonics. Mir Publishers, Moscow, Springer-V	verlag, 330 pp.,
1980. ISBN: 978-3-642-67176-0	
3 Bloom A.L., 2001: Geomorphology: A Systematic Analysis of Late	
CenozoicLandforms, Prentice-Hall of India, New Delhi	
4 Condie, K.C. (2013). Plate tectonics & crustal evolution. Elsevier.	
5 Keller, E.A. (2007). Introduction to environmental geology. Prentice-Hall,	Inc
6 Knödel, K., Lange, G. and Voigt, H.J., 2007. Environmental geology: hand	book of field
methods and case studies. Springer Science & Business Media.	
7 Mackenzie, F.T. (2011) Our Changing Planet: An Introduction to Earth Sys	stem Science and
Global Environmental Change, 4th edition, Prentice Hall, New York, N.Y.,	, 579 pp.
8 Scheidegger, A.E. (2012). Principles of geodynamics. Springer Science & I	Business Media.
9 Skinner, Brian J. and Stephen C. Porter (2000), The Dynamic Earth: An Int	roduction to
physical Geology, 4th Edition, John Wiley and Sons	
Turcotte, D.L. and Schubert, G. (2012) Geodynamics 2nd edition, Cambrid	ge University
10 Press, 2012, ISBN-13: 978-0521666244 (available in the internet).	
11 Valdiya, K.S. (2004). Geology, Environment, and Society. Universities Pre	SS.
Valdiya, K.S. (2013). Environmental Geology: Ecology, Resource and Haz	ard Management.
12 McGraw-Hill Education.	
Valdiya, K.S., and Sanwal, J. (2017). Neotectonism in the Indian Subcontir	ent: landscape
13 evolution. Elsevier.	

Formative Assessment for Theory			
Assessment Occasion/ type	Marks		
Attendance	10		
Seminar	10		
Debate/Quiz/Assignment	10		
Class test	10		
Total	40 Marks		
Formative Assessment as per guidelines are compulsory			

s per				
ks				
Practical Content				
1. Thickness calculation problems.				
2. Dip and strikeProblems.				
3. Interpretation of underground structure from boreholedata.				
4. Construction of geologicalcross-section.				
5. Structural contour maps: Tracing ofOutcrops.				

6. Field Visits

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical			
Assessment Occasion/ type	Marks		
Class Records	05		
Test	10		
Attendance	05		
Performance	05		
Total	25 Marks		
Formative Assessment as per guidelines are compulsory			

References:

Billings, M.P. (1978) Structural Geology – Prentice – Hall of India Private Ltd. New Delhi. Manual of geological maps N W GOKHALE Suppe, J.(1985) – Principles of structural geology – Prentice – Hall Badgley P.C. – Structural Geology for the explorationgeologist. Whitten, T- Structural Geology.

Field Visits:

Visit to important field areas showing good geological settings. Some selected areas like: Chitradurga Schist Belt, Kaladgi and Badami, Karighatta, Doddakanya mines, Pegmatite dykes in and around KRS Dam, Holenarasipura, Bageshapura, Chamundi Hills, Hutti Gold Mines, Arasikere areas, Byrapur, Ingaldhal, famous Igneous, Sedimentary and Metamorphic terrains of Karnataka.

Program Name	BSc in EAR	TH SCIENCES		Semester	V
Course Title	Geochemistry and Mining Geology (Theory)				
Course Code:	ERS C-11		No. of Credits		04
Contact hours	Contact hours 60 Hours		Duration of SEA/Exam		2 hours
Formative Assessment Marks 40		Summative Assessment Marks		60	

	Contents	
	Geochemistry	
Unit 1	Geochemistry: Basic concepts and Scope of Geochemistry. Geochemical classification of elements, Age, origin and composition of the universe with special reference to solar system. Biochemical classification of element and geochemical cycles.	15hrs 1 Credit
Unit 2	Geochemistry- Elements, Atoms, and Chemical Bonds, Principles of Geothermobarometry. Energy, Entropy and Fundamental Thermodynamic Concepts, Laws of Thermodynamics, Enthalpy, Entropy, Heat capacity and free energy, concept of equilibrium and equilibrium constant. Gibbs phase rule, application to mineralogical system - Forsterite-Fayalite; Albite-Anorthite; Albite-Orthoclase. Forsterite-Quartz and Diopside-Anorthite. Isotope geochemistry.	15 hrs 1 credit
	Mining Geology	
Unit 3	Introduction, mining terminologies, Classification of mining methods – Alluvial mining methods, open-cast mining methods, Quarrying, Underground mining methods – Open stopes, stoping with supports. Geological parameters for mine planning and designing. Drilling: methods and types of drilling methods and their uses. Mine safety, mine ventilation, Mining hazards, advantages and disadvantages of surface and subsurface mining. Impact of miningand mineral processing on environment and humanhealth.	15hrs 1 Credit
	Mineral Economics	
Unit 4	Concept of economics and its importance in national development and economy. Resource scenario of India. Production, demand, supply and substitution of natural resources in global contest. Structure and organisation of mineral industry, valuation of mineral property. Mineral deposits – meaning, specialities. Mineral legislation in India, Conceptofmineralresourcesanditsestimation, classificationofmineral resources – Indian andInternational. Mineral legislation, national mineral policy, Mineral Conservation: Introduction, Growth and awareness. Methods of conservation. Limitations in the scope of conservation.	15hrs 1 Credit

Formative Assessment for Theory			
Assessment	Mar		
Attendance	10		
Seminar	10		
Debate/Quiz/Assignm	10		
Class test	10		
Total	40 Marks		
Formativa Assassment as per auidelines are compulsory			

Formative Assessment as per guidelines are compulsory

Course Title	0	re Geology (<mark>Practi</mark>	cal) Practica	l Credits	02
Course Code	Е	RS C-14	Contact	Hours	4 Hours per week
Formative Asses	sment 25	5 Marks	Summat	ive Assessment	25 Marks
		Practical	Content		
Identification (with the help of physical properties), chemical composition, origin and Indian occurrences of the following Ore minerals and Industrial minerals Barite Bauxite Biotite Calcite Chalcopyrite ChromiteBariteDelevityDelevityDelevity				n and Indian Chromite Graphite	
Gypsum	Hematite	Ilmenite	Kyanite	Limonite	Magnesite
Magnetite	Malachite	Muscovite	Psilomelane	Pyrite	Pyrolusite
Serpentine	Sphalerite	Stibnite	Talc	Tourmaline	
Distribution of mineral deposits					

Formation, association and Indian distribution of following ore minerals: Mica, Copper, Manganese, Lead and Zinc, Bauxite, Chromite and Gold Numerical on Ore reserve estimation

Formative Assessment for Practical			
Assessment	Marks		
Class Records	05		
Test	10		
Attendance	05		
Performance	05		
Total	25 Marks		
Formative Assessment as per guidelines are compulsory			

Pedagogy: Experiential learning, Problem solving, Project

Re	References				
1	William M. White, Geochemistry, 2013, Wiley-Blackwell				
2	Krauskopf, K. B. and D. K. Bird. 1995.Introduction to Geochemistry. New York:McGraw-hill.				
3	Principles of Geochemistry – Brain Mason				
4	Geochemistry by Rankama and sahama				
5	Rare earth element Geochemistry by Henderson				
6	Elements of Mining Geology - Young				
7	Elements of Mining - Lewis				
8	Mining of mineral deposits - Shevyekov				
9	Introduction of mining - stoces				
10	Principles of Mining Geology, Arogyaswamy				
11	An Introduction to Mineral Economics by K K Chatterjee				
12	Mineral Economics by Sinha R.K & Sharma N L, Oxford & IBH				

Model curriculum for VIsemester

Government of Karnataka

Model Curriculum

Program	BSc in E	BSc in EARTH SCIENCE		Semester	VI
Course Title		Exploration Geology(Theory)			
Course Code:	ERS C-13			No. of Credits	04
Contact hours	60 Hours			Duration of	2 hours
Formative Assessment 40		Sur	nmative Assessment Marks	60	

	Contents	Hrs
Unit 1	Principles of Prospecting and Exploration. Methods of Prospecting. Geological Criteria and Guides, Exploratory Works- Sampling, Coning and Quartering, Drilling Methods and their types. Economic Evaluation of Mineral Deposits-Ore reserve estimation. Geochemical methods of exploration, Primary and secondary dispersion haloes, Methods of Geochemical exploration – Lithogeochemical, hydrogeochemical, biogeochemical, Atmogeochemical Methods.	15hrs 1 Credit
Unit 2	Solid Earth Geophysics: Introduction to Geophysics and its branches. Gravity field of earth. Geomagnetism, elements of earth's magnetism: Internal and External fields and their causes, Paleomagnetism, Polar wandering paths.Principles of Gravity method, geophysical anomalies, regionaland local gravityanomalies,instruments,interpretationofgravityanomalies.Principles of Magnetic method, magnetic properties of rocks and minerals, various instruments used in magnetic prospecting, and interpretation of magnetic anomalies.Interpretation of anomalies of simple geometric bodies using gravity and magneticmethods. Principles of Seismic prospecting, Elastic properties of rocks and minerals, various seismic methods. Principle of electromagnetic seismograph, displacement meters velocity meters accelerometers Broadband	15hrs 1 Credit

Unit 3	 SPMethod:OriginofSP,applicationofSPsurveys.InducedPolarization(IP) Method: Origin of IP, Membrane and Electrode polarization, time and frequency domains of measurement, chargeability, percent frequency effect and metalfactor. Principles of Electromagnetic prospecting, various EM methods: VLF (very low frequency); AFMAG (Audio frequency magnetic) methods; and central frequency sounding; transient electromagnetic methods; magneto-telluric method; geomagnetic depth sounding. (Only working principles, limitation and its application in geology, No derivations and problems) 		
	Principles of Well logging method, instrumentations, operational procedures and interpretations of various geophysical logs: SP, resistivity		
Unit 4	Electrical properties of rocks and minerals, concepts and assumptions of horizontally stratified earth, anisotropy and its effects on electrical fields, geoelectric and geological sections, D.C Resistivity method. Concept of natural electric field, various electrode configurations, Profiling and Sounding (VES). Types of Sounding curves (A,K,Q,H Curves), Concept of Electrical Resistivity Tomography (ERT). Radiometric and Airborne Geophysics: Principles of radioactivity, radioactivity decay processes, units, radioactivity of rocks andminerals, Instruments, Ionization chamber, G-M counter, Scintillation counter, Gamma rayspectrometer	15 hrs 1 credit	

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

	References			
1	Introduction to geophysical prospecting - Milton BDobrin			
2	Exploration geophysics – Jakaosku JJ			
3	Outlinesofgeophysicalprospecting-Amanualforgeologists-MBRamachandraRao			
4	Geophysical Methods in Geology – P V Sharama			
5	Exploration Geophysics for geologist and Engineers – BhimasanakaranandGaur			
6	Principles of Applied Geophysics – D SParansis			
7	Introduction to Geophysics – C H Howel			
8	Fundamentals of Geophysics - William Lowrie			
9	Applied Geophysics – W. M. Telford			

Formative Assessment for Theory			
Assessment Occasion/ type	Marks		
Attendance	10		
Seminar	10		
Debate/Quiz/Assignment	10		
Class test	10		
Total	40 Marks		
Formative Assessment as per guidelines are compulsory			

Course Title		Applied Geophysics (Practical)		Practical Credits	02
Course Code		ERS C-14		Contact Hours	4 Hours per week
Formative Ass	essment	t 25 Marks Summativ		ve Assessment	25 Marks
Practical Content					
 Geophysical Surveys and their Applications (Magnetic, Gravity, Seismic and Electrical methods) Study and interpretation of Electrical Resistivity Data, methods of resistivity profiling and sounding.VerticalElectricalSoundingandInterpretationofResistivityCurves.Calculation of apparent resistivity: Curve matchingtechniques. 					

3. Interpretation of Magnetic, Gravity and SeismicData.

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical			
Assessment	Marks		
Class Records	05		
Test	10		
Attendance	05		
Performance	05		
Total	25 Marks		
Formative Assessment as per guidelines are compulsory			

References

- 1. Interpretation of Resistivity Data, US geological survey professional paper499
- 2. Geophysics for Mineral Exploration: A Manual forProspectors

Program Name	BSc in EAR	TH SCIENCES	S	Semester	VI
Course Title	Mineral Processing and Marine Mineral Resources (Theory)			y)	
Course Code:	ERS C-15			No. of Credits	04
Contact hours	60 Hours			Duration of	2 hours
Formative Asse	essment	40	Summ	ative Assessment Marks	60

	Contents	45 Hrs			
Mineral Processing					
Unit 1	Mineral Processing: Definition, scope and necessity of Mineral Processing. Physical properties of Ores and their importance in Mineral Processing. Sampling: Definition, purpose, types of sampling and measurements of accuracy of sampling. Simple problems on estimation of recovery and concentration ratio.	1511			
	Laboratory Analyses: Definition and measurement of particle size, screening and sub-sieve sizing. Wet and dry sieving. Graphical representation of size analysis data and their applications. Industrial screens and their efficiency. Liberation: Definition, importance and application of ore microscopy in liberation studies and its analysis. Methods of liberation and behavior of locked particles.	15hrs 1 Credit			
	Methods of Separation: Gravity separation, Magnetic separation and Electrical separation. Flotation: Introduction, classification of flotation machines and machine features. Physical aspects of flotation. Electrokineticphenemenon, Electrical Double Layer at the Solid-Liquid interface. Adsorption and its characteristics, pH, Solid/Liquid ratio. Micro flotation tests, Laboratory flotation tests, Flotation Kinetics and Factors affecting flotation.				
Unit 2	Dewatering and Drying . Flocculation and dispersion, principles of flocculation and dispersion phenomena. Different types of flocculants used in dewatering techniques, selective flocculation and their applications. Dewatering by gravity sedimentation and by using screens. Applications of dewatering processes in mineral industries. Filtration : Principles and factors affecting the filtration, different types industrial filters, cake filtration. Centrifuging and drying: Different types of thermal dryers and their application, centrifugal sedimentation.	15hrs 1 Credit			
	Marine Posourcos				
1	Iviarine Kesources				

Unit 3	Polymetallic nodule deposits: Introduction – First discovery of nodules from different environments. Distribution; morphology; internal structure; mineralogy; geochemistry; accretion rate and genesis. Hydrothermal sulfides: Introduction; geological setting, genesis – hydrothermal activities, direct / indirect evidences, hydrothermal circulation, black and white smokers, mineralogy; geochemistry; ancient analogues; exploration methods.	15hrs
	Metalliferous sediments: Introduction, definition, characteristics, geological setting genesis; occurrences; ancient analogues; Red Sea deposits-geology history of exploration / discovery details of deposits. Phosphorites: Introduction, geological setting and occurrences; associations; form; mineralogy; geochemistry; environments of modern phosphorite deposition; controls on phosphorite formation; genesis - inorganic precipitation and replacement theories, long-term conversion of disseminated deposits.	1 Credit
Unit 4	Placers: Introduction - Characteristics, placer minerals, classification, environments of placer mineral deposition - rivers, beaches and offshore areas; sand as a resource.	15hrs 1
	Ocean-energy resources: Introduction - importance, general characteristics; tidal energy-potential, harnessing, special features of tidal power plants in operation / under active consideration; the Indian scenario.	Credit

Pedagogy: Lectures, Seminars, Industry/Institute Visits, Debates, Quiz, Project and Assignments

native Assessment for Theory		
Assessment Occasion/ type	Marks	
Attendance	10	
Seminar	10	
Debate/Quiz/Assignment	10	
Class test	10	
Total	40 Marks	
ative Assessment as per guidelines are compu	lsorv	

List of Reference Books:

- 1. Indian Mineral Resources Kirshnaswamy.
- 2. Industrial Minerals & Rocks of India Allied Publishers Deb, S.(1987)
- 3. Mineral Economics Call.No.553 Sinha & Sharma
- 4. Ore Deposits W.H. Freeman Park C.F.(1975).
- 5. Principles of Mineral Dressing: A.M.Gaudin
- 6. Ore Processing: S.K.Jain
- 7. Mineral Processing Technology: B.A.Wills
- 8. Text Book of Ore Dressing: A.F.Taggart
- 9. Hand Book of Mineral Dressing: A.F.Taggart
- 10. Mineral Processing Recent advances and future trends: S.P. Mehrotra & P.Sarkar

11. Laboratory Experiments in Mineral Processing: S. Venkatachalam & Degaleeson

12. Practicle Size Measurement: T.Allen

- 13. Mineral Deposits of the Deep Ocean Floor by Emery, K.O. and Skinner, Brian J(1977)
- 14. The Indian Ocean: Exploitable Mineral and Petroleum Resources: by <u>G. S.</u> <u>Roonwal</u>Springer Berlin Heidelberg (1986) 198pages.
- 15. Sedimentology and Petoleum Geology: Bjorlykke K.(1989).
- 16. Production of Oil and Gas: by <u>F. Abdulin(1985)</u>.
- 17. Drilling Oil and Gas Wells by Sidorov, N. A., MIR Publishers (1985) (p.35).
- 18. Petroliferous basins of India: Bhandari et al.(Ed.).

Course Title	Econor	mic Geology (<mark>Practical)</mark>		Practical Credits	02
Course Code	ERS C	-16		Contact Hours	4 Hours per week
Formative Ass	essment	25 Marks	Summative Assessment		25 Marks
Practical Content					
 Megascopic study of important economicminerals. Megascopic study of industrial minerals – Abrasives, Refractory, Ceramic, Fertilizer, Chemical minerals, Mineralpigments. Microscopic study of important economicminerals. 					
 Mineral sampling and statisticalculations. Calculation of mineral and ore reserves – average thickness of bed, assay value, assay width, specific gravity, tonnage, grade, volume and life of amine. 					

Pedagogy: Experiential learning, Problem solving, Project

Formative Assessment for Practical		
Assessment	Marks	
Class Records	05	
Test	10	
Attendance	05	
Performance	05	
Total	25 Marks	
Formative Assessment as per guidelines are compulsory		

<u>CBCS Question Paper Pattern for UG Semester</u> <u>DSC, DSEC &OEC</u>

Paper Code:	Paper		
Duration of	2 Hours	Max	60
Instruction:	Answer all the sections		

Section-A

Marks

Section-B

	Marks
Section-C	

Section C		
	Marks	